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1,2-Dialkylidenecycloalkanes are useful building blocks
in organic synthesis,! and as a result, several methods
have been developed for their preparation. Among the
most efficient approaches are metal-induced cyclizations
of 1,n-enynes or diynes using Zr,> Ti,® Ni,* or Pd.5
Typically, zirconium and titanium are used in stoichio-
metric amounts, require internal diynes (R* = R? = H),
and give identically substituted exocyclic methylene
groups (Y = Z), whereas nickel and palladium are
catalytic in the metal, require either R' or R? to be a
hydrogen, and provide unfunctionalized alkenes (Y = Z
= H).6
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We have recently reported that Pd(OH),/C (Pearlman’s
catalyst) is the best catalyst for the hydrostannation of
unactivated alkenes when compared to palladium cata-
lysts that contain phosphine ligands.” In addition, novel
chemo- and regioselectivity was observed in the hy-
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Table 1. The Stannylative-cyclization of 1,6-diynes
Catalyzed by Pd(OH),/C
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(a) Conditions: Reactions carried out with BugSnH (1.3 equiv, addition over 1 h),
Pd(OH),/C (5 mol%) in THF [0.1M]. (b) Isolated yield. (c) In addition to 2g, the product
arising from mono-hydrostannation of 1g (with Sn terminal) was isolated in 9% yield.

drostannation of methylenecyclopropanes and allenes.?®
We now report the remarkable difference between ligan-
dless catalysts and phosphine-containing palladium cata-
lysts in the hydrostannation of 1,6-diynes, which gener-
ates synthetically useful 1,2-dialkylidenecyclopentanes
containing a tributylstannane moiety.

Our studies began with readily available diyne 1a,
Table 1. Addition of 1.3 equiv of BusSnH over 1 h
(syringe pump) to a 0.1 M solution of 1a in THF in the
presence of 5 mol % Pd(OH),/C gave the corresponding
1,2-dialkylidenecyclopentane 2a in 95% yield as a single
stereocisomer. The stannylative cyclization is applicable
to a range of substrate types including those containing
protected and unprotected alcohols (entries 2—4) and
those with a heteroatom in the propargylic position
(entries 5—8) giving in each case good to excellent yields
of the corresponding cyclized products 2b—h.1%11 Of
particular note is the cyclization of dipropargyl sulfide
1g (entry 7) and sulfone 1h (entry 8), as it has been
reported that substrates containing sulfur at the prop-
argylic position are incompatible with homogeneous
palladium catalysts.5"

Treating 1a with various palladium catalysts revealed
several important trends. Phosphine-free catalysts such
as Pd(OH),/C, Pd/C, Pd(OAc),, and Pd,(dba); all gave
>75% yield of the cyclized product 2a. Conversely, the
use of Pd,(dba); in the presence of 1 or 2 equiv of PPh;
or 1 equiv of dppb results in a complex reaction mixture
containing less than 15% of the cyclized product.’> These
results suggest that a phosphine ligand occupies one of
the coordination sites in a proposed Pd(l1) intermediate,
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thereby preventing formation of a chelate between the
diyne and the metal bearing a hydride and tributylstan-
nyl group, vide infra.

Terminally substituted 1,6-diynes were also shown to
undergo the cyclization although the nature of the
substituent had a dramatic effect on the course of the
reaction, Scheme 1.33 Thus, alkynone 3 undergoes stan-
nylative cyclization to furnish the o,-unsaturated ketone
4 in 64% yield. In contrast, alkynol 5 gives a mixture of
regioisomers 6 and 7 in 42% and 14% yield, respectively,
pointing to electronic effects influencing the reaction
pathway. Monosilylacetylene 8 undergoes regioselective
hydrostannylation as the major reaction pathway to give
terminal vinylstannane 9 in 59% yield (as opposed to
stannylative cyclization) while the disilane gave mostly
recovered starting material.

A possible catalytic cycle for the stannylative cycliza-
tion of 1,6-diynes is illustrated in Scheme 2. Thus, in
those cases where a Pd(11) salt is used, reduction by Bus-
SnH may occur to give a Pd(0) species. Oxidative
addition of BusSnH and chelation of the 1,6-diyne leads
to the key intermediate I, which ultimately gives the
product by one of two reaction pathways.!* Stannylpal-
ladation of one alkyne with palladium placed so as to

(10) Dienes 2a—d are (2)-tributylstannanes, while 2e—h are (E)-
tributylstannanes due to the change in priority at the allylic position
(C vs N or O) not because of a change in reaction pathway. The (Z)
stereochemistry of the dienylstannane portion of adduct 2a was
confirmed by the 'H—H NOESY (compounds 2a-h showed the same
distinctive olefinic resonances in their 1H and 3C NMR spectra).

(11) The *H NMR of the crude reaction mixture for entries 1—6 and
8 indicated clean conversion to the cyclized product 2. Although
compounds 2 were isolated on EtzN-washed silica gel, the lower isolated
yields probably reflects problems with protodestannylation during
column chromatography.

(12) The *H NMR of the crude reaction mixtures, although complex,
were essentially the same and indicated that nonregioselective hy-
drostannylation of 1a was the major reaction pathway (hydrostanny-
lation:stannylative cyclization ~ 7:1).

(13) The 'H NMR spectra of the crude reaction mixtures indicted
minor amounts of other olefin-containing products, but these could not
be isolated.

(14) A palladacycle may also be proposed as an intermediate;
however, this requires a Pd(IV) oxidation state.
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maintain chelation to the second alkyne leads to inter-
mediate Il (Scheme 2, path 1). Cyclization of Il via
carbopalladation gives 111, which then undergoes reduc-
tive elimination to the observed product 2 while regen-
erating Pd(0). Alternatively, I may undergo a hydropal-
ladation (I — 1V), carbopalladation (IV — V), reductive
elimination sequence, again leading to the same product
(Scheme 2, path 2).

The synthetic utility of dienylstannanes 2 has been
investigated by Diels—Alder, Stille, and transmetalation-
guenching sequences, and these results will be presented
in a subsequent full paper.

In summary, we have found that the choice of catalyst
exerts a dramatic effect on the cyclization—stannylation
of 1,6-diynes. Ligandless palladium complexes were
shown to provide high yields of synthetically useful 1,2-
alkylidenecyclopentanes. We are now investigating the
effect of steric and electronic perturbation on the reaction
pathway (hydrostannation versus stannylative cycliza-
tion).%®
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(15) Preliminary results suggest the importance of electronic effects
on the reaction pathway as n-butyl-substituted diyne 16 undergoes
hydrostannation as the major reaction pathway (compared with
stannylative-cyclization with alkynone 3).
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